## C.U.SHAH UNIVERSITY Winter Examination-2018

## **Subject Name : Electromagnetics**

|            | Subject                                                                                                                                                                            | Code : 4'                                                                                                                                                                     | FE05EMS1                                                                                                                                                                                                                                                                                                                                                                                                                                | Branch: B.Tech (EC)                                                                                                               |                                  |                                      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|
|            | Semester                                                                                                                                                                           | :: 5                                                                                                                                                                          | Date : 30/11/2018                                                                                                                                                                                                                                                                                                                                                                                                                       | Time : 10:30 To 01:30                                                                                                             | Marks : 70                       |                                      |
|            | Instruction<br>(1) U<br>(2) I<br>(3) I<br>(4) A                                                                                                                                    | ons:<br>Jse of Pr<br>nstructio<br>Draw nea<br>Assume s                                                                                                                        | ogrammable calculator & any<br>ns written on main answer bo<br>t diagrams and figures (if nec<br>uitable data if needed.                                                                                                                                                                                                                                                                                                                | y other electronic instrument is p<br>ook are strictly to be obeyed.<br>ressary) at right places.                                 | orohibited.                      |                                      |
| Q-1        |                                                                                                                                                                                    | Attemp                                                                                                                                                                        | ot the following questions:                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                  | (14)                                 |
|            | <ul> <li>a)</li> <li>b)</li> <li>c)</li> <li>d)</li> <li>e)</li> <li>f)</li> <li>g)</li> <li>h)</li> <li>i)</li> <li>j)</li> <li>k)</li> <li>l)</li> <li>m)</li> <li>n)</li> </ul> | What is<br>What is<br>What as<br>Give Ga<br>What is<br>Provide<br>density'<br>State SI<br>Define<br>State ec<br>Give I<br>Magnet<br>State Fa<br>Give As<br>What as<br>Give Po | a scalar quantity? Give an ex<br>cross product of vectors?<br>re two methods of vector addi<br>auss's Law.<br>dipole?<br>e equation stating relation bet?<br>e equation stating relation bet?<br>kin effect.<br>Polarization.<br>quation of Stokes' Theorem.<br>Lorentz Force Equation, sh<br>ic Force.<br>araday's Law of Electrostatics<br>mpere's Circuital Law.<br>re intrinsic semiconductor ma<br>bisson's equation in terms of v | cample<br>ation?<br>ween electric field intensity and<br>owing force dependency on<br>s<br>terials?<br>volumetric charge density. | l electric field<br>Electric and |                                      |
| Atte       | mpt any f                                                                                                                                                                          | our que                                                                                                                                                                       | stions from Q-2 to Q-8                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                  |                                      |
| Q-2<br>Q-3 | (a)<br>(b)<br>(a)<br>(b)                                                                                                                                                           | Attemp<br>List out<br>State B<br>Attemp<br>Describ<br>Explain                                                                                                                 | ot all questions<br>Maxwell's equations in integ<br>iot-Savart law and explain in<br>ot all questions<br>be Cartesian and Spherical coo<br>Conductor, Semiconductor a                                                                                                                                                                                                                                                                   | gral & differential form.<br>detail.<br>ordinate system.<br>and Insulator with energy band o                                      | diagram.                         | (14)<br>07<br>07<br>(14)<br>08<br>06 |
| Q-4        | (a)                                                                                                                                                                                | Attemp<br>State ar                                                                                                                                                            | ot all questions<br>ad Prove Uniqueness Theoren                                                                                                                                                                                                                                                                                                                                                                                         | n                                                                                                                                 |                                  | (14)<br>07                           |



|     | <b>(b)</b>  | Explain Poisson's and Laplace equations                                                                                                                                                                                                                                                                                                                                                                                            | 07   |  |  |  |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Q-5 |             | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                              | (14) |  |  |  |
|     | (a)         | Derive wave equation for x-polarized TEM electric field in free space.                                                                                                                                                                                                                                                                                                                                                             | 07   |  |  |  |
|     | (b)         | The electric field intensity in polystyrene, having relative permittivity of 2.55, filling the space between the parallel-plate capacitor is $10 \text{ kV/m}$ . The distance between the plates is 1.5mm. Calculate (i)Electric Field Density(D) (ii)Polarization (P) (iii)The surface charge density of free charge on the plates (iv)The surface density of polarization charge (v)The potential difference between the plates. |      |  |  |  |
| Q-6 |             | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |  |
|     | <b>(a)</b>  | Using neat sketch define position vector. By giving example explain Gradient,<br>Divergence and Curl.                                                                                                                                                                                                                                                                                                                              |      |  |  |  |
|     | <b>(b)</b>  | The potential field of a system of charges.                                                                                                                                                                                                                                                                                                                                                                                        |      |  |  |  |
| Q-7 |             | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                              | (14) |  |  |  |
|     | (a)         | What is Current Density? Explain continuity of Current.                                                                                                                                                                                                                                                                                                                                                                            | 07   |  |  |  |
|     | <b>(b)</b>  | Describe Conductor Properties and Boundary conditions.                                                                                                                                                                                                                                                                                                                                                                             | 07   |  |  |  |
| Q-8 |             | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                              | (14) |  |  |  |
|     | <b>(a)</b>  | Describe Poynting's Theorem.                                                                                                                                                                                                                                                                                                                                                                                                       | 07   |  |  |  |
|     | <b>(b</b> ) | Perform transformation of Cartesian Coordinate System to Cylindrical Coordinate System and Vice Versa.                                                                                                                                                                                                                                                                                                                             | 07   |  |  |  |

